

Class 9 Science – Chapter 2: Is Matter Around Us Pure

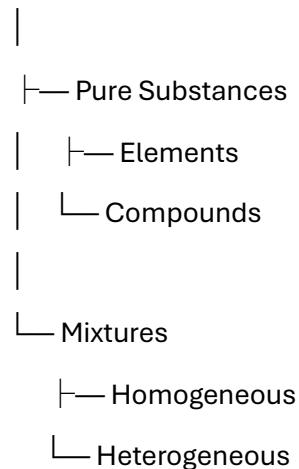
1. Meaning of “Pure Substance” (Scientific View)

In everyday language, pure means “no dirt” or “not mixed with anything unwanted.”

But in **chemistry**, a substance is pure when:

- It contains **only one type of particles**
- It has a **fixed composition**
- It shows **definite physical and chemical properties**

Examples of Pure Substances


- Distilled water (H_2O)
- Oxygen gas (O_2)
- Iron (Fe)
- Carbon dioxide (CO_2)

2. Classification of Matter

Matter around us is classified based on composition:

Matter

3. Pure Substances

Pure substances are of **two types**:

A. Elements

An **element** is a substance made of **only one kind of atom** and **cannot be broken down** into simpler substances by chemical reactions.

Total known elements: More than 110

Types of Elements

1. Metals

Properties:

- Lustrous (shiny)
- Hard (generally)
- Malleable (can be beaten into sheets)
- Ductile (can be drawn into wires)
- Good conductors of heat and electricity

Examples: Iron, Copper, Gold, Aluminium

2. Non-Metals

Properties:

- Usually dull
- Poor conductors
- Not malleable or ductile
- Many are gases

Examples: Oxygen, Nitrogen, Sulphur, Carbon

3. Metalloids

Elements showing properties of both metals and non-metals.

Examples: Silicon, Boron, Germanium

B. Compounds

A **compound** is a pure substance formed when **two or more elements combine chemically in a fixed ratio**.

Examples

Compound	Elements	Ratio
Water (H ₂ O)	Hydrogen + Oxygen	2:1
Carbon dioxide (CO ₂)	Carbon + Oxygen	1:2

Compound	Elements	Ratio
Sodium chloride	Sodium + Chlorine	1:1

Properties of Compounds

- Properties are **different** from elements
- Composition is **fixed**
- Have a **chemical formula**
- Can be separated only by **chemical methods**

4. Mixtures

A **mixture** is formed when two or more substances are mixed physically.

Examples

- Air
- Sugar solution
- Soil
- Milk

Characteristics

- No fixed ratio
- Components keep their properties
- Can be separated by physical methods

Types of Mixtures

1. Homogeneous Mixture

A mixture with **uniform composition**.

Also called a **solution**.

Examples: Salt water, Air, Vinegar

2. Heterogeneous Mixture

Composition is **not uniform**.

Examples: Sand + water, Oil + water

5. Solution

A **solution** is a homogeneous mixture of solute and solvent.

Term Meaning

Solute Substance that dissolves

Solvent Substance that dissolves solute

Example: Salt (solute) + Water (solvent)

Properties of Solutions

- Particles very small (< 1 nm)
- Cannot be seen
- Do not scatter light
- Stable
- Cannot be separated by filtration

6. Concentration of a Solution

Mass by Mass Percentage

$$\text{Mass \%} = \frac{\text{Mass of solute}}{\text{Mass of solution}} \times 100$$

7. Suspension

A **suspension** is a heterogeneous mixture where particles are large and visible.

Examples: Muddy water, Chalk powder in water

Properties

- Particles visible
- Scatter light
- Settle down on standing
- Can be filtered

8. Colloids

A **colloid** is between solution and suspension.

Examples: Milk, Fog, Smoke

Term	Meaning
-------------	----------------

Dispersed phase Particles

Dispersion medium Medium

Properties

- Show Tyndall effect
- Stable
- Cannot be filtered easily

9. Tyndall Effect

Scattering of light by colloidal particles.

Example: Light beam visible in dusty room.

10. Separation of Mixtures

Method	Principle	Example
Filtration	Insoluble solid	Sand + water
Evaporation	Solid from liquid	Salt from seawater
Centrifugation	Density difference	Cream from milk
Sublimation	Solid \rightarrow gas	Camphor
Chromatography	Different solubility	Ink colors
Distillation	Boiling point difference	Alcohol + water
Fractional distillation	Close boiling points	Petroleum

11. Physical vs Chemical Change

Physical Change Chemical Change

No new substance New substance formed

Reversible Irreversible

Example: Ice melting Burning paper

12. Mixture vs Compound

Mixture	Compound
Physical combination	Chemical combination
Variable composition	Fixed composition
Properties remain	New properties
Separated physically	Need chemical reaction

Chapter in One Line

Matter is either **pure substance (element/compound)** or **mixture (solution, suspension, colloid)**, and mixtures can be separated by physical methods.
