

Class 9 Science – Chapter 4: Structure of the Atom (Detailed Notes)

1. Matter and Atoms – Basic Idea

We already know that **matter is made of particles**. These particles are so small that we cannot see them with naked eyes. Scientists called these smallest particles **atoms**.

The word *atom* comes from the Greek word “**atomos**”, which means *indivisible*. But later discoveries proved that atoms **can be divided** into smaller particles.

So, an atom is **not solid throughout**. It has an internal structure.

2. What is an Atom?

An **atom** is the smallest unit of an element that takes part in chemical reactions.

- Atoms are extremely small in size ($\sim 10^{-10}$ m)
- Atoms of different elements are different
- Atoms combine to form molecules

Example:

Hydrogen atoms combine to form H_2 molecule.

3. Subatomic Particles

Atoms are made of three fundamental particles:

(a) Electron (e^-)

- Discovered by **J.J. Thomson (1897)**
- Negatively charged particle
- Very small mass
- Moves around the nucleus

(b) Proton (p^+)

- Discovered through **canal rays experiment** (E. Goldstein)
- Positively charged
- Mass nearly equal to neutron
- Present inside nucleus

(c) Neutron (n^0)

- Discovered by **James Chadwick (1932)**
- No charge (neutral)

- Mass similar to proton
- Present inside nucleus

Particle Charge Relative Mass Position

Electron -1 Very small Outside nucleus

Proton +1 1 Inside nucleus

Neutron 0 1 Inside nucleus

4. Thomson's Model of Atom

Thomson compared the atom to a **plum pudding** or **watermelon**.

Main Points

- Atom is a positively charged sphere
- Electrons are embedded in it
- Total positive charge = total negative charge \rightarrow atom is neutral

Drawback

- Could not explain how positive charge is arranged
- Failed to explain Rutherford's experiment

5. Rutherford's Alpha Scattering Experiment

Rutherford bombarded **alpha particles** on a thin gold foil.

Results

1. Most particles passed straight \rightarrow atom mostly empty
2. Some deflected \rightarrow presence of positive charge
3. Few bounced back \rightarrow very small, heavy center

Conclusions

- Atom has a **tiny, dense nucleus**
- Nucleus contains protons
- Electrons revolve around nucleus
- Most of atom is empty space

Limitation

Electrons moving in circular paths should lose energy and fall into nucleus \rightarrow atom would collapse (but this doesn't happen).

6. Bohr's Model of Atom

Niels Bohr solved Rutherford's problem.

Postulates

1. Electrons revolve in fixed paths called **shells or orbits**
2. Each shell has fixed energy → called **energy levels**
3. Shells are named: **K, L, M, N**
4. Maximum electrons in a shell = $2n^2$

Shell n Max Electrons

K 1 2

L 2 8

M 3 18

N 4 32

Electrons do not lose energy while moving in these shells.

7. Atomic Number (Z)

Atomic number = **Number of protons** in nucleus.

In a neutral atom:

Protons = Electrons

Example:

Carbon has 6 protons → Atomic number = 6

8. Mass Number (A)

Mass number = Protons + Neutrons

$$A = p + n$$

Example:

If atom has 8 protons and 8 neutrons:

Mass number = 16

9. Symbolic Representation

X = Element symbol

A = Mass number

Z = Atomic number

Example:

10. Distribution of Electrons (Electronic Configuration)

Rules

1. Maximum electrons = $2n^2$
2. Outer shell \leq 8 electrons
3. Shells fill from inner to outer

Examples

Element Atomic No. Configuration

H	1	1
He	2	2
Li	3	2,1
Be	4	2,2
B	5	2,3
C	6	2,4
N	7	2,5
O	8	2,6
F	9	2,7
Ne	10	2,8

11. Valency

Valency = combining capacity.

- If outer electrons $\leq 4 \rightarrow$ Valency = electrons
- If $> 4 \rightarrow$ Valency = $8 -$ electrons

Element Configuration Valency

Na	2,8,1	1
Mg	2,8,2	2
O	2,6	2
Cl	2,8,7	1

12. Isotopes

Same atomic number but different mass number.

Example of Hydrogen:

- ^1H (Protium)
- ^2H (Deuterium)
- ^3H (Tritium)

Uses

- Cobalt-60 → cancer treatment
- Uranium-235 → nuclear fuel
- Iodine-131 → thyroid treatment

13. Isobars

Same mass number but different atomic numbers.

Example:

$^{40}_{18}\text{Ar}$ and $^{40}_{20}\text{Ca}$

14. Difference: Isotopes vs Isobars

Isotopes **Isobars**

Same element Different elements

Same Z Same A

Different A Different Z

15. Important Concepts for Exams

- Atom mostly empty

- Nucleus very small but heavy
- Electrons revolve in shells
- Atomic number identifies element
- Valency depends on outer electrons
- Isotopes have same chemical but different physical properties

16. Quick Revision Points

- ✓ Electron is lightest particle
- ✓ Proton and neutron form nucleus
- ✓ K shell holds max 2 electrons
- ✓ Stable atoms have complete outer shell
- ✓ Mass number = $p + n$